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ABSTRACT

Dynamic buckling loads are obtained for axisymmetric spherical caps with

initial imperfections. Two types of loading are considered , namely , step

loading with infinite duration arid right triangular pulse. Solutions of per-

fect spherical caps under step loading are in excellent agreement with previous

• findings. Results show that Initial imperfections do indeed have the effect

of reducing the buckling capacity for both dynamic and static responses,

although they are affected in a different manner. Fru~ the solutions obtained

for triangular pulse situations, It is revealed that pulse duration has a

very significant impact on the magnitude of the dynamic buckling load. When
/

comparing these solutions with those of step loading, it Is concluded that

the step loading with infinite duration is the limiting case of a triangular

pulse, and that the step loading provides the most severe loading situation

for dynamic analysis. 
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INTRODUCTION

Dynamic buckling analysis of shell structures has received considerable

attention in the literature. Shell structures designed acc’Drding to qua~~—

static analysis may fail under conditions of dynamic l oading . It i~ ai~ ’

found that initial imperfections in ~p ti . rir~i1 shell structures have the effect

of reducing shell static bucka ing capacity (Refs . [l~2~3,
1~])~ Initial imper-

fection of shell structures, in fact , is sometimes used to account for t~i€

discrepancy between results obtained from experimental tests and theorectical

analyses.

The problem of axisymmetric dynamic snap—through of clamped spherical

caps under implusive loading was first solved by P ~io~ey and Bodner 5 . The

oime problem under instantaneously applied step loading was studied by

Budiansky and Roth [6] and Simitses [~]. Rayleigh—Ritz ~.r Galerkin methods

~nr u~c~d tot shell dynamic buckling analysis in those studies . Archer and

• Lange 
[8] 

discussed the same problem numerically by solving governing differen—

• tial equations by a combination of finite—difference technique and Potter

method . Lock, Okubo and Whittier 9 approached this problem by performing

experiments for a particular shell geometry.

The same problem under a uniform step pressure is solved numerically

in Refs. [10_li] and results obtained from these investigations are in

reasonable agreement. From this agreement , it may be said that the axisym—

metric dynamic buckling criterion — dynamic snap—through — suggested by
Budiansky and Roth 

[6] 
has generally been accepted .

Asymmetric dynamic buckling analysis of spherically caps is examined in

Rets. 13 ,15 In which a perturbation approach was utilized to deal with

asymmetric deformation mode.

4 * Numbers in brackets designate references at end of paper.

•  _____ 
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Effect of Initial imperfections on static shell buckling analysis was

studied by Hutchinson l~ who employed the Koiter approach to determine the

approximate asymmetric buckling load for spherice~ shells with Initial

imperfections . Koga and Hoff 2 gave the values of buckling pressure for

F complete shells with axisyinmetric dimple type imperfectIons. Numerical solutions

for asymmetric buckling loads are given in Ref s. [3~ 14] for spherical caps with

• initial asymmetric imperfections.

In this paper, attention is focused on the effect of initial

imperfections on the dynamic buckling of axisyinmetrie spherical caps. The

influence of different types of dynamic pulse shape on shell buckling capacity

is also considered.

In the next section, the governing eq~uations and solution methods utilized

in the present paper are discussed. This is followed by a description of

dynamic buckling criteria. To verify the present approach, a comparison of

the present results with those in the literature is given for axiaymmetric

buckling loads of spherical caps under uniform step pressure and with initial

imperfections of different magnitude. Also presented are the solutions

asscciated with a triangular pulse with different time durations. Conclusions

and a general discussion are given in the final section.

_ _ _ _ _ _ _ _ _ _ _ _
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GOVERNING EQUATIONS r
The geometry of a clamped spherical cap is shown in Fig. 1, in which

H is the central height and R denotes the shell radius ; a is the base radius;

W(r,t) and ~J(r,t) are disp’acement components along norma: and tangential

directions at time t, respectively, and Wj(r,O) is the initial impe~~eetion.

The undeformed shape of’ the perfect shell can be adequately described by

Z = H[i - (n a)?] (i)

where r is the radial coordinate.

The general differential equations for the response of spherical caps

with initial imperfections are given in Ref. [14]. In this paper, we consider

only the situation of the axisymmetnic deformation with the inclusion of

• dynamic effects. The equilibrium equations associated with this situation are

DV~W - Nr(Wf + - N~ 

~ ~
)

-q — p hW (2a)

(rNr)’ — N0 = rphU (2b)

where ~2( ) = ( )“  + C )‘/r; D = Eh3/12(l — v2 )  , E is Young’s modulus ,

h is the shell thickness, v is the Poisson’s ratio, and p is the mass per

unit volume of shell; prime and dot denote differentiations with respect

to r and t, respectively, and 0 is the circumferential coordinate; q(r,t) is

the applied loading and Wf = + W; stress resultants are related to strains by

Nr [Eh/(l - ~2)] ~~ 
+

N0 = [Eh/(l — v2)J (
~~ + vc r )

( in which strains are expressed in terms of displacements by

~r 
= u’ — + ( w ’ )2  + w’ w~

(14 )
- = U 

~C e
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The terms on the right hand sides of Eqs. (2) are the inertia forces

due to normal and radial displacements of the shell. For convenience, the

following nondimensional quantities and operations are introduced:

x r/a m~~~~l2(l—v
2)

R = a2/2H 
~~r 

= I4Eh/R2m2

m2a2/Rh p(r,t) = q(r,t)/qcr ( 5)
)‘  = a( )/3x C ’) = a( )I~r

r JE/pR2t u aU/h2

w W/h w1 W1/h

where 
~~r 

is the classical buckling pressure of a c~znplete spherical shell of

the same redius of curvature and thickness.

With the adoption of Eqs. (5 ) ,  the nondimensional forms of Eq~~ (2)

become

— l2(c~ + yen) (V
2v + V2w1)

— 12(1 + v) 
~~~ ~~r 

+ e0)

— 12(1 — ‘~~ ~~r 
— 

~~~ 
(w ” + w~ )

(6a )

u” + — ~~~. + g(w) = 0 (6b)
x X

Where Cr and c0 are riondiniensional quantities of 
~~~
. and c9, respect ively:

1 2Cr = u’ — —
~

- w + ~.(w’) + w’w~
(7)

- -  ~~~~~~~-~~~~- - -  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~ 
-

~~~~~~~~~~



and g (w )  = f’(w) + vf’(w) + (1 - v) If (w) - f (w)1 /xr 0 0 j

f (w)~~~~~~w + 2~(wI)2 + w ’w’r 
xn2 2 1

f
0
(w) = — !~.w  (8)

f ’ ( w )  = — 4 w’ + w ’w” + w ’w’ +

f ’ ( w )  = _ _ T w ’0 m

It is noted that, in view of the assumed shallowness, the effect of

radial inertia force is neglected ~n Eq. (6b). Eqs. (6) constitute the basic

equations for the analysis subjected to prescribed boundary conditions.

Boundary condition considered in this paper are clamped:

u(l,r) = w(l,T) = w’(l,r) = 0. Due to symmetry at the apex, we also

have u(O,r) = w’(O,T) = 0.

t.

U
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~~THOD OF SOLUTION

Eqs. (6) are not only lengthy but also highly nonlinear in w, the major

variable. The solution plan is to superpose a finite—difference mesh on the

one—dimensional shell domain, replace nonlinear differential equations

Eqs. (6) by a set of two nonlinear algebraic finite—difference equations, and

solve the resulting set of equations by the nonlinear relaxation method.

Details of the nonlinear relaxation technique will not be discussed here;

description of the technique is given in references[16.17]. Simply put, the

nonlinear relaxation technique offers a method of systematically reducing the

errors at each nodal point for each algebraic equation to some acceptable level.

Rather than solving all two differential equations simultaneously, we elect

to solve first the w system of difference equations in an iterative manner,

and subsequently the u system of!eqUatiOfls. We revert back to the w system

again and the u and so on, until the percentage change of the displacement

at all nodal points is always less than 0.0001 percent on the (absolute)

average.

The second time derivative of v in Eq. (6a) is approximated by the

Houbolt’s third—order buckwards difference expression [18]:

~(x,t) (l/~52)[2w(xit) — 5w(x,r — 6)

+ 14v (x,T - 26) - w(x ,t - 36)] (9)

where 6 t~t is the equal time increment.

The accuracy of this representation is of order 62. Special attention is

devoted to the first few time steps where Eq.(9) cannot be applied directly.

Before giving the expression for these first few time steps, we note that

the initial conditions are of the form

w(x,0) = 0 ~r (x ,0) = 0 (10)

~~~~~~~~~~~~~~~~~~~~~~~~~ 
___ i ~~~~~~~~
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From Eq.(l0), expression of Eq. C 9) for the first few time steps can

readily be obtained as (Ref. loj)

i) t 0 , w(x,0 ) 0

2) r = 6; since ~(x,0) = 0, we have w(x,—6) = w(x,6)

and hence ~(x,6) = (2/62) w(x,6)

3) t = 26; ~ (x,26) = (2/62) [w(x~26) - 3w(x~6)]

14) r > 2*5, Eq.(9) can be applied directly.

In our numerical computation, the number of nodal points are selected

- • such that a subsequent increase in nodal points does not significantly affect

the magnitude of the static buckling load. With This consideration, 114 nodal

points for A = 5 and. up to 22 points for X = 10 are adopted; A Poisson ’s

ratio of 1/3 is also used. A time step must be selected very judiciously.

A good selection is such that the results are within a desired accuracy, but

not too small in light of computer time considerations. A reasonable corn—

promise of equal time increments of *5 = 0.10 is used; this same time increment

is also selected in Ref. 11

t •
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DYNAM IC BUCKLING CRITERI ON

Criteria for dynamic axisymmetr ic buckling of the shallow spherical

shell are not as well defined as for static buckling , and require an eval-

uation of the transient response of the shell for various load levels .

The criterion adopted most widely (Refs . [lO~ll~ l2~ li~])  is based on

plot~. of the peak nondmmensional average displacement in time history, A max,

of the shell structure versus the amplitude of the load where A is the

average displacement and has been defined [1l~l14] in dimensionless form as

follows:

pa
A = rWdr I j  rzdr (ii)

J O 0

The numerator is the volume generated by the shell deformation and the

denominator is the constant volume under the cap .

There is a load range where a sharp jump in peak average displacement

occurs for a small change in load amplitude. The inflection point of the

load deflection curve in this range is regarded as the buckling load; this

procedure is called the “inflection point method” . When the buckling load

is defined in this manner, it is also referred to as the dynamic snap—

through load .

The method Ic demonstrated by a typical example shown in Fig. 2 . In

this figure, A — t curves are displayed for several uniform load parameters p

(thi s example is related to a clamped spherical cap of A = 5 under step

uniform pressure of infinite duration). A plot of vs. p based on

information given in Fig. 2 is shown in Fig. 3 . It is clear from this

figure that there is a sharp jump at p = 0.146, and according to the criterion

defined above , this value is taken as buckling pressure for thi s particular

spherical cap geometry and load situation.

_ _ _  

•1
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CHECKS WITH EXISTING SOLUTIONS FOR PERFECT CAPS

The general program developed for buckling of spherical caps with initial

imperfections [3~14] Is modified to account for the simpler axisyinmetric spher-

ical cap under dynamic loading. In order to test the validity of this modified

program, computer runs are made to determine dynamic buckling loads of spherical

caps for which numerical results exist.

Fig. 2 represents A — r curves for different load levels for the axisym—

metric spherical cap of A = 5 under uniform step pressure of infinite duration;

the Amax — p curve associated with Fig. 2 is given in Fig. 3 . According to

the dynamic buckling criterion described earlier, dynamic buckling loads for

A = 5 under step loading is taken as 
~cr 

= 0.146 (where 
~cr 

is denoted as the

dynamic buckling or snap—through load).

Computer runs also are made for A = 7.5 and 10; the A — t curves of these

two geometric parameters are shown in Figs. 14 and 5 , respectively. A

summary of these values along with the results obtained elsewhere are tabu-

lated in Table 1 for comparison. It is found from this Table that the present

values are in very good agreement with solutions presented in Refs. [lo_l2~l14].

Table 1 Dynamic Buckling Pressure for Various Values of Spherical Cap
Parameters

A 5 7.5 10

Present .146 .1414 .149

Ref.  10 .149 .5 .142

Ref. 11 .145 •1414 .37

Ref. 12 .148 .51 .50

Ref. 114 .148 .5 .143

____________ ____________________
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The present solution is carried out using time steps S = 0.10 with

i14 to 22 meridional finite difference stations for A = 5 to 10. The length

of response calculation time r carried out in computer runs is varied from

case to case with the criterion that , in the neighborhood of the buckling loa d ,

r is sufficiently large enough to a1lo~ A — t curves to fully develop . As a

result we obtain more accurate buckling loads, and save computer time when

load levels are other than in the neighborhood of the buckling pressure.

More discussion in this regard will be provided in the next section.

It is Interesting to note from Table 1 that the magnitude of dynamic

buckling loads is not sensitive to shell geometry A. This finding suggests

that the dynamic buckling load obtained for spherical caps represents the

value for the complete spherical shell . Rovever , this observation does not

apply to the static buckling situation, since results obtained in this study

show that static buckling loads are 0.65 , 1.02 and 0.85 for A = 5, 7.5 and

10, respectively. 

-—~~~ - - S . - - .- . ---.~~~~—~~~~~~~~~~~
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DYNAMIC BUCKLING OF SPHERICAL CAPS WITH INITIAL IMPERFECTIONS

With the validity of the computer program established for dynamic buckling

analysis as demonstrated in the previous section, we now proceed to inves-

• tigate the effect of initial imperfections on the dynamic buckling capacity

of spherical caps . We shall also examine how different types of loadings with

various time duration affect the dynamic buckling loads.

Two types of dynamic loadings are considered herein , namely , uniform step

pressure of infinite duration and a right triangular pulse with various time

duration. Solutions obtained in this study will give some indications on the

most severe type of dynamic loading situations. Specific result s on these

two types of loading situations are discussed separately in this section.

The axisyinmetric initial imperfection adopted in this study is of the

dimple type which was also used by Koga and Hoff [2]. This type of imper—

fection is expressed mathematically as

= (W0/h)  (1 — x2 ) 3  (12)

• where W0 is the maximum imperfection which occurs at the shell apex. Selection

of this expression is , in fact , quite arbitrary; however , it does provide an

adequat e description for actual shells since the important parameter is the

maximum eccentricity and not the imperfection shape function.

Since dynamic buckling pressure is not sensitive to spherical cap geo-

metric parameter (A) as can be seen from Table 1, we select A = 5 for all

analyses in this section.

F !

~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



Step LoadI~~

Let us first consider buckling analysis of the axisymmetric spherical cap

(A = 5) with initial imperfections under a uniform step loading of infinite

duration. Some typical A — p curves associated with various load levels are

given in Fig . 2 . From this figure, it is noted that a different response

calcualtion time r has been utilized for different load levels . Although the

reason for using this strategy was mentioned briefly in the last section , a

more detailed discussion in this regard is given here . As is apparent from

Fig. 2 the peak value of A occurs after several cycles of oscillation for

the load level p above the critical value of p for snap-through (we shall call

this value Per the dynamic buckling or dynamic snap-through load). It is

• also observed that for the load levels above ncr ’ the larger the value of

p, the smaller the response calculation time taken for A to reach its peak

value. Clearly, a flexible response calculation time is desired to cope with

various load situations.

The strategy initiated here stems from the fact that in dynamic analysis

with significant nonlinearity, time consuming iteration schemes and a huge

number of time steps are usually involved. This strategy perhaps can best

be accomplished through the execution of the computer program in an interactive

mode . By inserting some simple statements in the program , execution of

the program will pause after a fixed period of response calculation time and

the user can decide to continue or terminate the execution depending on

• whether A has reached its peak value. On the other hand , for a load range very

• close to Per , sufficient response calcualtion time should be given to insure

that the shell structure does not eventually buckle .

This approac h should predict more accurate buckling loads and will, also

save considerable computing t ime . Huang 10 carried his solution for A = 5

out to I 114 using a very fine time increment S = 0.02 and (14X + 1) stations .

--~~~------ ~~~~~~~ii--- 
-

~~~~~~~~~
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Stephens and Fulton [11] u~~ained their solution up to r = 60 for A = 5

and t = 120 for higher values of A by using S = 0.10 and 20 stations. Ball

• and Burt 114 carried their results out to r = 50 for A = 5, and t = 120

for A = 8 and 11 stations with S = 0.05. As mentioned earlier , in the

present calculations, we employ different response calculation times for

different load situations; S = 0.10 and 114 to 22 stations for A = 5 to 10

are selected. The convergence criterion adopted is that the average tbso—

lute percentage change of displacement functions is less than 0.0001 .

With adoption of thi s strategy for the selection of response calculation

• time, a series of runs are made for an axisyinmetric s;herical cap (A = 5)

with different magnitudes of initial Imperfections. Fig. 6 represents the

— p curves for this shell geometry with imperf ections W01h ranging from

0.1 to 1.0. Aslo included in this figure for comparison purposes is the

result for the perfect shell which has already been displayed in Fig. 3

According to the dynamic buckling criterion described earlier in this paper ,

the dynamic buckling loads 
~~~~~ 

are found to be o.146, 0.39 , 0.28 and 0.185

for imperfections of W0/h = 0, 0.1, 0.5 and 1.0, respectively.

Sudden jump in A 
max 

near the critical load area is very obvious for

W0/h = 0, 0.1 and 0.5. For the case of W0/h 
= 1.0, the &~ax 

—p curve does

not exhibit such a drastic change in displacement and the inflection point

technique is used to determine the magnitude of the buckling load. Suffice

it to say that the sudden jump phenomenon may be viewed as a particular case

• of the situation whose dynamic buckling load must be determined by the inflec-

tiori point method. Therefore, the inflection point method can be regarded

as a more general means to obtain dynamic buckling loads.

• A plot of Pcr vs. W0/h based on the results displayed in Fig. 6 is

shown in Fig. 7 . From this figure it is obvious that initial imperfections

do indeed have the effect of reducing dynamic buckling capacity of spherical caps.

•1

i~-~-- ~~ _ _ -~~
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For comparison purposes, static buckling loads are also obtained for

the same shell geometry and initial imperfections, and these results are

also superposed in Fig. 7 . It is noted from this figure that the two

curves intersect at about Wfh = 0.714. It is observed from this figure that,

when comparing with dynamic buckling loads, static response yields higher

buckling values for W0/h in between 0 and 0.714, but , on the other hand., has

a lower buckling value when W0/h is greater than 0.714. Evidental].y, when

imperfections exist , the static resp onse reduces shell buckling capacity at

a faster rate than that by dynamic response. In other words, static response

of axisy~~etric spherical caps is more sensitive to initial imperfections I .
than dynamic response. This finding is significant in shell structure design

if initial imperfections are taken into consideration.

• I
,

I

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~
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Trj an~ular Pulse

Having analyzed the dynamic buckling response of the spherical cap with h

an axisyinmetric imperfection and a spatially and temporally constant pressure

field, we turn next to the same problem except for the pressure pulse which

is now taken as triangular rather than constant with time. The right tn—

angualr pulse shown in the subset of Fig. 8 is taken as representative cf

this type of loading. At dimensionless time 1* the pressure has a zero value.

Except for some minor modifications made to deal with the time—varying

nature of applied loading, the same computer program and strategy described

earlier are utilized for this analysis.

Four triangle pulses with duration r~ = 0.5 1414, 2. 176 , 10.88 and 21.76

are considered . The same spherical cap geometry (A = 5) ~nd magnitude of

imperfections are retained. Fig. 8 presents the results of the axisyimnetnical

spherical cap under triangle pulse of r * = 0.51414 and with imperfect ions

W / h  = 0, 0.1 , 0.5 and 1. According to the dynamic buckling criterion adopted

in this paper , buckling loads are discerned as 5.05, 14.8, 3.95, and 3.1 for

W0/h = 0, 0.1, 0.5, and 1, respectively. Figs. 9 , 10 , and 11 display

the results associated with triangular pulse durations r~ = 2.176, 10.88 and

21.76, respectively.

• A summary of numerical results shown in these figures is given in Table

• 2 for comparison. Also included in this table are the values for static

response and step loading of infinite duration. In addition to buckling

loads, Table 2 also gives for most situations the dimensionless buckling time

and finite difference node where plasticity begins. One interesting and

Important observation made from this table is that, for the cases of very

short triangular pulses (1* = O.5~414 and 2.176), the spherical cap buckles

after removal of the pulses. Evidently, the kinetic energy imparted to the

cap by the pressure pulse was enough to propel the cap into a buckling mode

- -
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well after loa d removal. An examination of L nodes provided in this table

r~ veals tha t no regu lar pattern is developed for the location as to where

plasticity may begin (Mises criterion utilized) .

Fig. 13 exhibits the relationship between dynamic buckling load 
~cr

and pulse duration T~~ for different magnitudes of imperfections. This

figure demonstrates that the length of ~~ has a very significant effect on

the magnitude of the dynamic buckling load. For the same W/h , thi s f i gure

shows that dynamic buckling load for = 0.544 is about 9 to 11 times

• greater than that for t~ = 21.76.

• F ig.  14 gives the curves for dynamic buckling lr’ad versus initial

imperfection for various triangular pulse durations. Also shown for corn—

parison purposes is the result of step loading which was displayed in Fig. 7.

As can be seen from this figure that, for a given magnitude of imperfection,

the shorter the triangular pulse, the higher the buckling load. This figure

also reveals that the limiting case of triangular pulse of various time

durations is the step loading of infinite duration. it is important to

point out that this limiting case represents the most severe loading situa-

tion for dynamic buckling analysis, since it yields the lowest values of

dynamic buckling loads.

I .
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DISCUSSION AND CONCLUSIONS

An investigation has been carried out for dynamic buckling analysis of

a.xisyimnetrical spherical caps with initial imperfections. Two types of load-

ing are considered, namely, step pressure of infinite durat ion and triangular

pulses of various time durations. Governing equations given in Refs. {3~1e]

for buckling analysis of spherical caps with asymmetric Imperfections are

modified to account for the axisyinmetnic nature of the problem and dynamic

• effects. Central finite differences and Houbolt ’s backwards difference scheme

18 are used to replace spatial and temporal derivatives, respectively. The

nonlinear relaxation method 16,17 is~ then employed to solve the resulting

algebraic equations.

Unlike static buckling analyses, dynamic buckling loads are deter—

mined from a displaced volume—pressure (&
~ax — p) curve by the inflection point

method 11 . Dynamic snap—through occurs when there is a sharp j ump in the

— p curve [io]. This indicates that the maximum amplitude of oscil-

lation of the shell has a discontinnous change.

To verify possible validity of the present computer program, a series

of runs are made to determine dynamic buckling loads for a.xisymmetrica3.

spherical caps of A = 5, 7.5, and 10 under uniform step loading of infinite

time duration. Current results along with previous findings [lo_114] are

tabulated in Table 1 for comparison. Good agreement among these solutions

is observed; it may be concluded that the inflection point method has been

generally accepted as a dynamic buckling criterion.

Since dynamic buckling loads are not sensitive to shell geometry as can

be seen from Table 1, we select A 5 for all analyses In this paper. A

dimple type of imperfection is also adopted in this study which provides a

very adequate description of the local nature of initial imperfections in

spherical shells.

• 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~ _ _ _ _ _ _ _ _ _  _ _ _ _

~~~~~~~~~~
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Results of the axisyinmetric spherical cap (x = 5) under step loading are

obtained for maximum imperfections of W0/h 
= 0.1, 0.5 an(1 1.0. These re~ its

are displayed in Fig. 6 along with that of the perfect shell. Buckling loads

obtained from Fig. 6 by the inflection point method are presented in Fig. 7

Also displayed in Fig. 7 , for comparison purposes are the solutions from

static buckling analysis. It is observed from this figure that, for W0/h less

than about 0.714, the static buckling load is higher than the dynamic buckling

load. However, when W0/h is greater than 0.714, the above situation is

reversed. This result demonstrates that the static buckling load decreases

more rapidly than t~e dynamic buckling load becaus~ of imperfections. Moreover,

the static response is more sensitive to initial imperfections than the dynamic

response.

It is Important to point out that imperfections do indeed have the effect

of reducing buckling capacity for both static and dynamic responses, although

they are affected in different manners.

Calculations are also carried o”t for the same shell geometry with the

same magnitude of imperfections under right triangular pulses. Four different

pulse durations are considered , namely, t ” = 0.514 14 , 2.176, 10.88 and 21.76.

Results of 
~max 

— p for these four cases are shown in Figs. 8—il , respectively.

Dynamic buckling loads obtained from these figures are displayed against pulse

duration T* in Fig. 13 for various magnitudes of imperfection and against

initial imperfection in Fig. 114 for different pulse durations. Also displayed

in Fig. 114 is the solution for the step loading. From Fig. 13 , it is found

• that pulse duration has a very significant impact on the magnitude of dynamic

buckling load. For example, for the same imperfection , dynamic buckling load

( 
for T * 0.51414 is about 10 times higher than that for ~~ = 21.76. This obser-

vation can also be seen from Fig. lb . In fact , Fig. lb shows that the limiting

case of the triangular pulse is the step loading of infinite duration , and that
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the step loading represents the most severe loading situation for dynamic

buckling analysts , since it yields the lowest values of buckling loads .

A sunm~ry of results displayed in Fig. 8—11 along with those of static

and dynamic step loadings of infinite duration is given in Table 2 for coin—

parison purposes. In addition to buckling loads, Table 2 also provides

information for the buckling time and finite difference node where plas-

ticity begins. Two observations are made: first, for the cases of very

short triangu lar pulses ( T~ = 0.544 and 2.176), the spherical cap buckle s

after removal of the pulses; secondly, no regular pat tern is developed for

the location as to where plasticity may begin.

As a fina l remark, the flexible response calculation time option set

up in the computer program enables users to continue or terminate the exe—

cution. This option not only provides a possibility of obtaining more ac—

curate dynamic buckling loads, but also saves considerable comput ing time

for the cases where additional execution appears to be unnecessary.

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  
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Fi g. 1 Geometry of clamped spherical cap

with axisymmetric imperfection.
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